3,437 research outputs found

    Adaptive Radar Detection of Dim Moving Targets in Presence of Range Migration

    Full text link
    This paper addresses adaptive radar detection of dim moving targets. To circumvent range migration, the detection problem is formulated as a multiple hypothesis test and solved applying model order selection rules which allow to estimate the "position" of the target within the CPI and eventually detect it. The performance analysis proves the effectiveness of the proposed approach also in comparison to existing alternatives.Comment: 5 pages, 2 figures, submitted to IEEE Signal Processing Letter

    A novel approach to robust radar detection of range-spread targets

    Full text link
    This paper proposes a novel approach to robust radar detection of range-spread targets embedded in Gaussian noise with unknown covariance matrix. The idea is to model the useful target echo in each range cell as the sum of a coherent signal plus a random component that makes the signal-plus-noise hypothesis more plausible in presence of mismatches. Moreover, an unknown power of the random components, to be estimated from the observables, is inserted to optimize the performance when the mismatch is absent. The generalized likelihood ratio test (GLRT) for the problem at hand is considered. In addition, a new parametric detector that encompasses the GLRT as a special case is also introduced and assessed. The performance assessment shows the effectiveness of the idea also in comparison to natural competitors.Comment: 28 pages, 8 figure

    Knowledge-aided covariance matrix estimation and adaptive detection in compound-Gaussian noise

    Get PDF
    We address the problem of adaptive detection of a signal of interest embedded in colored noise modeled in terms of a compound-Gaussian process. The covariance matrices of the primary and the secondary data share a common structure while having different power levels. A Bayesian approach is proposed here, where both the power levels and the structure are assumed to be random, with some appropriate distributions. Within this framework we propose MMSE and MAP estimators of the covariance structure and their application to adaptive detection using the NMF test statistic and an optimized GLRT herein derived. Some results, also conducted in comparison with existing algorithms, are presented to illustrate the performances of the proposed algorithms. The relevant result is that the solutions presented herein allows to improve the performance over conventional ones, especially in presence of a small number of training data

    Probing the presence of planets in transition discs' cavities via warps: the case of TW Hya

    Get PDF
    We are entering the era in which observations of protoplanetary discs properties can indirectly probe the presence of massive planets or low mass stellar companions interacting with the disc. In particular, the detection of warped discs can provide important clues to the properties of the star-disc system. In this paper we show how observations of warped discs can be used to infer the dynamical properties of the systems. We concentrate on circumbinary discs, where the mass of the secondary can be planetary. First, we provide some simple relations that link the amplitude of the warp in the linear regime to the parameters of the system. Secondly, we apply our method to the case of TW Hya, a transition disc for which a warp has been proposed based on spectroscopic observations. Assuming values for the disc and stellar parameters from observations, we conclude that, in order for a warp induced by a planetary companion to be detectable, the planet mass should be large (Mp1014MJM_{\rm p} \approx 10 - 14M_{\rm J}) and the disc should be viscous (α0.150.25\alpha \approx 0.15 - 0.25). We also apply our model to LkCa 15 and T Cha, where a substellar companion has been detected within the central cavity of the transition discs.Comment: 12 pages, 4 figures, 2 tables. Accepted for publication in MNRA

    Adaptive detection of distributed targets in compound-Gaussian noise without secondary data: A Bayesian approach

    Get PDF
    In this paper, we deal with the problem of adaptive detection of distributed targets embedded in colored noise modeled in terms of a compound-Gaussian process and without assuming that a set of secondary data is available.The covariance matrices of the data under test share a common structure while having different power levels. A Bayesian approach is proposed here, where the structure and possibly the power levels are assumed to be random, with appropriate distributions. Within this framework we propose GLRT-based and ad-hoc detectors. Some simulation studies are presented to illustrate the performances of the proposed algorithms. The analysis indicates that the Bayesian framework could be a viable means to alleviate the need for secondary data, a critical issue in heterogeneous scenarios

    Knowledge-aided Bayesian covariance matrix estimation in compound-Gaussian clutter

    Get PDF
    We address the problem of estimating a covariance matrix R using K samples zk whose covariance matrices are kR, where k are random variables. This problem naturally arises in radar applications in the case of compound-Gaussian clutter. In contrast to the conventional approach which consists in considering R as a deterministic quantity, a knowledge-aided (KA) approach is advocated here, where R is assumed to be a random matrix with some prior distribution. The posterior distribution of R is derived. Since it does not lead to a closed-form expression for the minimum mean-square error (MMSE) estimate of R, both R and k are estimated using a Gibbs-sampling strategy. The maximum a posteriori (MAP) estimator ofR is also derived. It is shown that it obeys an implicit equation which can be solved through an iterative procedure, similarly to the case of deterministic ks, except that KA is now introduced in the iterative scheme. The new estimators are shown to improve over conventional estimators, especially in small sample support

    Pensions reforms, workforce ageing and firm-provided welfare

    Get PDF
    This paper investigates the impact of an exogenous increase in the legal retirement age on the firms’ propensity to provide welfare services voluntarily to their employees. To this purpose we exploit a unique dataset derived from the Employers and Employees Survey, conducted by the National Institute for Public Policies Analysis (Inapp) in 2015 on a large and representative sample of Italian firms. By referring to the existing sociological and economic literature we make the hypothesis that a sudden increase in the share of older workers may motivate the employers to establish welfare schemes as a way to cope with an ageing workforce. The results obtained from different regression models show that firms which, as a consequence of the Law 214/2011 (the so-called “Fornero pension reform”), were forced to give up previously planned hirings increased the probability of providing welfare services at the workplace. This result also holds if propensity score matching methods are used in order to control for sample selection issues

    An ABORT-like detector with improved mismatched signals rejection capabilities

    Get PDF
    In this paper, we present a GLRT-based adaptive detection algorithm for extended targets with improved rejection capabilities of mismatched signals. We assume that a set of secondary data is available and that noise returns in primary and secondary data share the same statistical characterization. To increase the selectivity of the detector, similarly to the ABORT formulation, we modify the hypothesis testing problem at hand introducing fictitious signals under the null hypothesis. Such unwanted signals are supposed to be orthogonal to the nominal steering vector in the whitened observation space. The performance assessment, carried out by Monte Carlo simulation, shows that the proposed dectector ensures better rejection capabilities of mismatched signals than existing ones, at the price of a certain loss in terms of detection of matched signals

    Direction detector for distributed targets in unknown noise and interference

    Get PDF
    Adaptive detection of distributed radar targets in homogeneous Gaussian noise plus subspace interference is addressed. It is assumed that the actual steering vectors lie along a fixed and unknown direction of a preassigned and known subspace, while interfering signals are supposed to belong to an unknown subspace, with directions possibly varying from one resolution cell to another. The resulting detection problem is formulated in the framework of statistical hypothesis testing and solved using an ad hoc algorithm strongly related to the generalised likelihood ratio test. A performance analysis, carried out also in comparison to natural benchmarks, is presented
    corecore